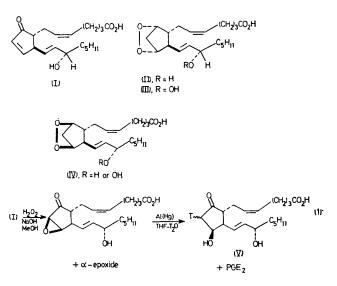
Disparate Pathways of Prostaglandin Biosynthesis in Coral and Mammalian Systems

By E. J. COREY* and HARRY E. ENSLEY


(Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138)

and MATS HAMBERG and BENGT SAMUELSSON* (Karolinska Institutet, S 104 01, Stockholm, Sweden)

Summary The biosynthetic pathway to prostaglandin A_2 (PGA₂) in the coral *P. homomalla* does not involve PGE₂, PGH₂, PGG₂, or 11-*epi*-PGE₂ as intermediates and hence differs from that of mammalian systems.

THE discovery¹ that the Caribbean sea whip (or soft coral) *Plexaura homomalla* is a rich source of prostaglandin A_2 (I) (PGA₂) has provoked interest in coral prostaglandin biosynthesis. We now report that the biosynthetic pathway in this coral differs fundamentally from that for mammalian systems. It has been noted previously² that the coral and mammalian PG synthetases respond very differently to cofactors and inhibitors. For example, aspirin and indomethacin, powerful inhibitors of the mammalian synthetase,³ are without comparable effect on the coral PGA₂ synthetase.² In addition, the pathway of PGA₂ biosynthesis in the coral was found, surprisingly, not to involve PGE₂.²

The endoperoxides (II) (PGH₂) and (III) (PGG₂) have been shown to be intermediates in the biosynthesis of prostaglandins from arachidonic acid by the mammalian synthetase from sheep (or bull) seminal vesicles.⁴ However, in numerous experiments with several different preparations of PGA₂ synthetase² of *P. homomalla* no formation of PGA₂ whatsoever could be detected starting either with [1-1⁴C]- PGH_2^{4b} or $-PGG_2^{4b}$ (each *ca*. 15 × 10⁶ d.p.m. mg⁻¹). The only products detected from PGH_2 and PGG_2 in these experiments are the non-enzymic decomposition products

observed in control experiments with denatured (boiled) enzyme. In other control runs it was demonstrated that the PGH₂ and PGG₂ used for these experiments were cleanly converted by a synthetase preparation from bull seminal vesicles to PGE_2 and PGF_{23} . Thus it is clear that the endoperoxides PGH₂ and PGG₂ are not intermediates in PGA₂ synthesis by P. homomalla.

Another possible route of biosynthesis in P. homomalla was tested and ruled out, a process occurring via the endoperoxide structure (IV) and 11-epi-PGE₂. A synthesis of

10-[3H]-11-epi-PGE₂ (V) was carried out from PGA₂ (equation 1).⁵ Incubation of chromatographically purified, labelled 11-epi-PGE₂ with active synthetase from P. homomalla gave no PGA₂ and essentially quantitative recovery of the counts as 11-epi-PGE₂.

We thank the U.S. National Science Foundation and the Swedish Medical Research Council for support.

(Received, 16th January 1975; Com. 051.)

¹ A. J. Weinheimer and R. L. Spraggins, *Tetrahedron Letters*, 1969, 5186. ² E. J. Corey, W. N. Washburn, and J. C. Chen, *J. Amer. Chem. Soc.*, 1973, 95, 2054. ³ J. R. Vane, *Nature*, 1971, 231, 232.

 (a) M. Hamberg and B. Samuelsson, Proc. Nat. Acad. Sci. U.S.A., 1973, 70, 899; (b) M. Hamberg, J. Svensson, T. Wakabayashi, and B. Samuelsson, *ibid.*, 1974, 71, 345; (c) B. Samuelsson and M. Hamberg, in 'Prostaglandin Synthetase Inhibitors,' eds. H. J. Robinson and J. Vane, Raven Press, New York, 1974, p. 107; (d) D. H. Nugteren and E. Hazelhof, Biochim. Biophys. Acta, 1973, 326, 448.

⁵ See E. J. Corey and H. E. Ensley, J. Org. Chem., 1973, 38, 3187.